On Implicit Attribute Localization for Generalized Zero-Shot Learning
نویسندگان
چکیده
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations seen via their attribute-based descriptions. Since attributes are often related specific parts of objects, many recent works focus on discovering discriminative regions. However, these methods usually require additional complex part detection modules or attention mechanisms. In this paper, 1) we show that common ZSL backbones (without explicit nor detection) can implicitly localize attributes, yet property is not exploited. 2) Exploiting it, then propose SELAR, a simple method further encourages attribute localization, surprisingly achieving very competitive generalized (GZSL) performance when compared with more state-of-the-art methods. Our findings provide useful insight for designing future GZSL methods, and SELAR provides an easy implement strong baseline.
منابع مشابه
A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...
متن کاملGeneralized Zero-Shot Learning via Synthesized Examples
We present a generative framework for generalized zeroshot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can s...
متن کاملIs Attribute-Based Zero-Shot Learning an Ill-Posed Strategy?
One transfer learning approach that has gained a wide popularity lately is attribute-based zero-shot learning. Its goal is to learn novel classes that were never seen during the training stage. The classical route towards realizing this goal is to incorporate a prior knowledge, in the form of a semantic embedding of classes, and to learn to predict classes indirectly via their semantic attribut...
متن کاملLONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning
Conventional zero-shot learning (ZSL) methods recognise an unseen instance by projecting its visual features to a semantic space that is shared by both seen and unseen categories. However, we observe that such a one-way paradigm suffers from the visualsemantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot explicitly correspond to visual patterns, and vice versa. Such...
متن کاملOrdinal Zero-Shot Learning
Zero-shot learning predicts new class even if no training data is available for that class. The solution to conventional zero-shot learning usually depends on side information such as attribute or text corpora. But these side information is not easy to obtain or use. Fortunately in many classification tasks, the class labels are ordered, and therefore closely related to each other. This paper d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2021
ISSN: ['1558-2361', '1070-9908']
DOI: https://doi.org/10.1109/lsp.2021.3073655